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ABSTRACT 

One of the common route to chaos is the period doubling route [6, 17]. For systems that undergo period doubling 

cascades, there also exists an “inverse cascade” [2] of chaotic band merging called reverse bifurcation [4, 8, 10]. This 

paper investigates the period doubling route to chaos and the period doubling nature of chaotic bands using the logistic 

map. We have considered this map and identified the parameter values  for which the period doubling bifurcations occur 

and have shown that the bifurcation points converges to an accumulation point where the chaotic situation starts. Our tool 

for finding such a point is with the help of establishing the „Feigenbaum delta‟ [3] which is one of the several universalities 

discovered by famous particle physicist M. J. Feigenbaum. The period doubling scenario explains us how the behaviour of 

the model changes from regularity to a chaotic one. Further, we have discussed about the reverse bifurcation and reverse 

bifurcation points called Misiurewicz points [13,14, 15, 18] and established the Feigenbaum delta in that case also. This 

situation occurs inside the chaotic region and it unfolds some regularity even within the chaotic region. 
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INTRODUCTION  

One generally thinks that a chaotic systems needs a complicated formula for its mathematical representation.  But, 

there are very simple functions which can lead not only to chaos, but can make us understand how this chaotic situation 

gets developed from „ordered‟ behaviour. The logistic function, used in population dynamics, is one of these functions. 

The logistic function is  

                (1) 

where  indicates the “fertility” or “growth rate” of a population with limited resources. Here,   and 

, the reason of which are well discussed in [6, 12].  We can see that this function represents an inverted parabola 

(Figure 1), intersecting the  axis in  and . 

 

 
Figure 1 
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For values , the height of the parabola will be in the interval [0, 1]. If we iterate this function, we will 

observe the discrete dynamics of the population that the function models. 

Over the last more than twenty five years, the logistic map  has served as an example to understand nonlinear 

dynamics and chaos. As R. M. May stressed some 36 years ago, the patterns formed by iterates of the logistic map are 

simple to compute but illustrate the complexities possible in nonlinear dynamics [12]. The bifurcation of the logistic map, 

which summaries the long- time dynamics as a function of the control parameter  in equation 1, is one of the most 

commonly reproduced images of dynamical systems. 

 Also, using this map, M.J. Feigenbaum derived his famous renormalization-group theory of scaling exponents 

[3].  

The universality discovered by Feigenbaum [3] with nonlinear models has successfully led to observe that large 

classes of nonlinear systems exhibit transition to chaos through period doubling route. In 1999, Kuruvila and 

Nandakunmaran [9] restrained chaos in semiconductor laser using reverse bifurcation. So there is not only theory value but 

also application value in the study of Period Doubling and Reverse Bifurcation. 

PERIOD DOUBLING BIFURCATION AND PERIOD DOUBLING ROUTE TO CHAOS 

In a period-doubling bifurcation, the previously stable fixed/periodic points become unstable after attaining some 

value of the control parameter, and stable periodic trajectories of period, doubled to the previous one appears near it.  The 

original fixed/periodic points continues to exist as unstable fixed/periodic points, and all the remaining points are attracted 

towards the new stable periodic trajectories of doubled period. This process repeats itself up to certain critical value of the 

parameter where chaos creeps into the previously deterministic system.  

The logistic map  has two fixed points  and  which are solutions of the equation  

. 

Since     hence the derivative of  at these fixed points are: 

  for   

That is, the fixed point  is an attracting or stable fixed point for .  Also, as 

for .  

the fixed point  is a repelling or unstable fixed point for    

So, it is seen that at , a transcritical bifurcation takes place  because for  the two fixed points 

exchange their stability i.e., the fixed point 0 becomes an unstable fixed point and the fixed point   becomes a stable 

fixed point. At , the fixed point  loses its stability. Hence the region of stability for the fixed point   is  

.  
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If we increase  beyond 3, the fixed point  becomes unstable. 

At the parameter value ,   . This shows that after the parameter value   both the 

fixed points found from the equation   ceases to be stable.  

We now consider the iterated map . 

The fixed point of the second iterated map is given by            

  

Solving the above equation we get four solutions, viz.   

 

Out of the above four solutions the first two are fixed points of , which already became unstable after the control 

parameter   attains the value 3. The other two solutions, the fixed points of  , are the periodic point of period two 

of the logistic map . 

As we are considering only the real solutions, for the two fixed points  

 

we must have . Hence, for   values between 0 and 4, these solutions are defined only for . 

Moreover at , we set   i.e., the two solutions bifurcate from the fixed point .   Figure 2 

shows a bifurcation diagram at .  

Thus, we say that at , The logistic map trajectories undergo period doubling bifurcations. Just below 

, the trajectories converge to a single value of . Just above , the trajectories tend to alter between two 

values of .  

 
Figure 2: The Period Doubling Bifurcation at  
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Let us see how the derivatives of the map function and of the second iterate function change at the bifurcation 

value. Equation  tells us that  passes through the value  as  increases through 3. Next we can 

evaluate the derivative of the second iterate function by using the chain-rule of differentiation.  

 

If we now evaluate the derivative at one of the fixed points say, , we find  

             (2) 

In arriving at the last result we made use of the fact that  for the two periodic points of period 2. 

Equation  states a rather surprising and important result-  

The derivative of  are the same at both the fixed points that are part of the two cycles. This result tells us that 

both these fixed points are stable or both are unstable and that they have the same „degree‟ of stability or instability. Again, 

since the derivative of  is equal to  for , equation (2) tells us that the derivative of  is equal to for 

. As  increases further, the derivative of  decreases and the fixed points become stable.  

For  just grater than 3, we see that the slope of  at those two fixed points is less than 1 and hence they are 

stable fixed points of . Besides this, the unstable fixed point of  located at  is also an unstable fixed point 

of . The two 2-cycle fixed points of  continue to be stable fixed points until .  At this value of 

, which is denoted by , the derivative of  evaluated at the two cycle fixed points is equal to  and for values of 

larger than , the derivative is more negative than . Hence for  values greater than , the 2-cycle points are 

unstable fixed points. We find that for  values just greater than , the trajectories settle into a 4 cycle, i.e. the trajectory 

cycles among 4 values which we can label as  and . To determine these periodic points we need to solve an 

eight degree equation viz.  which is manually cumbersome and time consuming. With the help of computer 

programs mentioned in detail in [20], we obtained the bifurcation points and the value of Feigenbaum delta which are 

furnished below:           Table 1 

Bifurcation Points Periods 

 Period 2 is born 

3.44948974278317… Period 4 is born 

 Period 8 is born 

 Period 16 is born 

 Period 32 is born 

 Period 64 is born 

 Period 128 is born 

 Period 256 is born 

 Period 512 is born 

 Period 1024 is born 
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Based on these bifurcation values, we compute  

…, 

, 

, 

 

 4.669132150630… 

and so on.  

Then the Feigenbaum delta is evaluated as 

… 

The nature of  is universal i.e. it is the same for a wide range of different iterations.  

BIFURCATION DIAGRAM 

The bifurcation diagram [6, 17] has been one of the frequently used tools to study the chaotic or periodic 

behaviour of one dimensional maps. We can summarize the behaviour of the logistic map with the help of a bifurcation 

diagram.  

 

 

 

Figure 3 

From our previous discussion it was seen that for ,  is the stable point attractor and its value 

increases as the value of  increases. For , the attractor is a period-2 cycle, as indicated by the two branches. As  

increases, both branches split simultaneously, yielding a period 4 cycle. This splitting is the period doubling bifurcation. A 
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cascade of further period-doublings occurs as  increases, yielding period-8, period-16, and so on, until at 

, the map becomes chaotic and the attractor changes from a finite to an infinite set of points 

[19]. 

A FEW OBSERVATIONS HAS BEEN MADE ON THE BIFURCATION DIAGRAM 

First Observation 

In the formation of bifurcation diagram we observed that in the periodic region of the bifurcation diagram when 

we plot the iterations (with respect to the parameter after attaining the super cycle values) the odd iterations form the upper 

branch whereas the even iterations form the lower branch of the bifurcation diagrams [1, 7, 11].  

 If we symbolise the successive iterations by the numbers 1,2,3,4,5,6,… ,considering the first odd iterations as 1  

we found that the iterate labels from top to bottom are 1-3-4-2 in the period four region, 1-5-7-3-4-8-6-2 in the period 8 

region as shown in the figure 4.    

 

Figure 4 

The Second Observation 

It is not very difficult to recognize the heavy dark „curves‟ of points that run through the chaotic region of the 

bifurcation diagram. These heavy concentrations of points are due to trajectories that pass near the critical point  

of the iterated map function. All trajectories that pass near the critical point track each other for several subsequent 

iterations because the slope of the map function and all of its higher iterates is 0 at the critical point.  

Thus, those trajectories diverge rather slowly leading to concentrations of points in the bifurcation diagram. The 

trajectory points that follow exactly from the critical point value  are called the images of the critical point. These 

images of the extrema, or critical points, of , are called the boundaries of the map. Analysis of boundaries helps to 

explain many diverse aspects of nonlinear maps, especially probability distributions in chaotic regions, the emergence of 

periodic orbits in such regions, and the effects of crises etc.  

This description will enable us to better understand the reverse bifurcation or band splitting bifurcation 

phenomena, the Misiurewicz points [13] of the logistic map.  
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Figure 5:  Bifurcation Diagram of the Logistic Map for  

Third Observation 

The logistic map defined by the equation (1) is a inverted parabola with a maximum at . For a given , 

the function cannot attain a value greater than . Therefore the long time dynamics of the map are confined to the interval 

 which is . 

is the maximum  value visited by trajectories on the attractor for a particular parameter value.  

 is the minimum value of  visited for that parameter value. 

 This means, the first two iterates of , starting from , give the upper and lower limits for the attracting region.  

For the logistic map,  , so the upper boundary of the chaotic bands is a straight line that hits  at 

. Also,  is given by . Thus, the lower boundary of the chaotic bands is a cubic curve that hits 

 at  . 

The dynamics of logistic map do not fill the entire unit interval until . The subsequent images of the 

critical point are interior boundaries which corresponds to the images of the critical point of the higher order iterates of the 

logistic map. 

In figure 6, we have plotted the first 10 boundaries (orbit of the critical point [23]) (labelled in the figure) of the 

logistic map as a function of  for , and superimposed this graph on the bifurcation plot of the same 

region which was shown in figure 5 to create the figure 7.  

For , the accumulation point for the period doubling bifurcations, the interior boundaries confine the 

periodic orbits. For , the boundaries not only confine the chaotic dynamics of the map, but also correspond 

exactly to the regions of high density.  
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Figure 6: First Ten Images of the Critical Points in the Range  

 

Figure 7: The Location of the First Ten Images of the Critical Point (Boundaries) are Plotted on the                             

Bifurcation Diagram 

It is important to note that the boundaries deviate from the bifurcation plot during periodic cycles, (shown in 

figure 5) since the dynamics of such cycles are governed by fixed points and not boundaries. But in regions where the map 

is chaotic, the boundaries form a skeletal frame which gives shape to the map. For  these images of the critical 

point do delimit a set of chaotic "bands" to which the trajectorie are confined.  

 

Figure 8: First Ten Images of the Critical Points in the Range  
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REVERSE BIFURCATION OR BAND SPLITTING BIFURCATION AND MISIUREWICZ POINTS 

OR POINTS OF REVERSE BIFURCATION 

From figure 5, 6 and 7, it is observed that near  two chaotic bands merge into one and there seems to 

be a convergence of the curves of the image points. This special image point is called the Misiurewicz point [13, 14, 15, 

18].  

We can notice that same type of crossing or convergence occurs where four chaotic bands merge to give two 

chaotic bands near . 

 If we observe the dynamics of the map from higher parameter values to lower ones, we can say that near 

 one chaotic band splits into two chaotic bands for lower parameter values. This phenomenon is called the 

reverse bifurction or the band splitting bifurcation [4, 8, 10].  

We already observed that the first and the second iterates of the critical point constituted the outer boundaries of 

the iterative process after a possible transient period. In fact it is well known that the behaviour of the iterates of any 

function at its critical points is such that the first and second iterates are the upper and lower limits of the whole iterates or 

in otherwords any higher order iterate of the function will lie between these upper and lower limits.  

Also in the region from  to the Misiurewicz point where two chaotic bands merge into one, the inner most 

iterates will be the third iterate and the fourth iterate of the map function at its critical point, in which  is the lower 

boundary  of the upper chaotic band and  is the upper boundary  of the lower chaotic band [Fig. 6]. In between  

and the Misiurewicz point which is created during the over lapping of the two chaotic bands into one, there may be a large 

number of separate bands (say, approximately bands near ) which merge together as the parameter varies and 

finally becomes a single band at the above mentioned Misiurewicz point. This band merging process takes place only when 

an unstable fixed point (say ) hits the attractor[4]. Generally speaking, the band merging of order  to  with 

n=1,2,3…  takes place only when the unstable fixed points, which created during the bifurcation of  cycle to  

cycle , hits the chaotic attractor or band of order  [5]. Below we have shown this fact in case of the first three 

Misiurewicz points.  

 

Figure 9: The Dotted Line Shows the Unstable Periodic Orbit Created at Every Period Doubling Bifurcation. It is to 

be Noted that Corresponding to Every Period Doubling Bifurcation there Exists a Misiurewicz Point 
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To the right of the Feigenbaum point or accumulation point, we find a completely different zone (formed by 

apparently chaotic bands) but at the same time with a lot of similarities to that of the left zone. In the right extreme, for 

, there is only one band spanning the whole interval from 0 to 1. It is the so called 1-periodic chaotic band. When  

decreases the band narrows. At (say) the band splits into two parts that compose the 2 chaotic band. At 

(say) the two bands split into four parts that compose the 4 chaotic bands and so on. Therefore, there is 

also a period doubling cascade of chaotic bands that finishes from the opposite side at the Feigenbaum point 

.[16]. This region is called the chaotic region, and points m are called band merging 

points or Misiurewicz points .  

Technique to Find Out the Misiurewicz Points 

 In figure 6 and 7, we already observed that the first Misiurewicz point is the intersection of 

 through which all the other higher iterates of the map at its critical point passes. Thus, we can find 

the first Misiurewicz point by finding out the point of intersection of . Below we have furnished a 

schematic diagram (Figure 10) by which some of the next Misiurewicz points can be found out.  
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In fact, if we denote a Misiurewicz point as  in the context that they have a preperiod n (they are n 

preperiodic) and they eventually have a period p (they are eventually preperiodic) then the i-th Misiurewicz point  can 

be represented by   which can be found out from the point of intersection of   and  

 

There is only one apparent exception : If we apply this rule for  we shall obtain , i.e two preperiodic 

and eventually  periodic. But ½-periodic is 1-periodic, then it is , as it really is [16].       

In fact the band merging can be calculated analytically from the relation.   which we have 

shown below: 

In the case of Logistic map, we have 

, 

, 

 and 

. 

Hence the first band merging point is the point at which 

 

While solving this equation, we get 

 

Since  is the unstable 1-cycle fixed point, the band merging crisis point is the point at which . 

The equation  finally reduces to  

 

The only real solution to this equation is  

 

    

In the similar way using the formula  and with the help of computer programming 

we have determined the reversed bifurcation point or Misiurewicz points as shown in the table below: 
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Table 2 

Number of chaotic bands Misiurewicz points ( ) Feigenbaum delta 

First 2 chaotic band is born 3.678573510428322…  

First 4 chaotic band is born 3.592572184106978…  

First 8 chaotic band is born 3.574804938759208… 4.834437020275166… 

First 16 chaotic band is born 3.570985940341614… 4.657119739532333… 

First 32 chaotic band is born 3.570168472496375… 4.671741451276784… 

First 64 chaotic band is born 3.569993388559133… 4.669005381415207… 

First 128 chaotic band is born 3.569955891325219… 4.669249408391745… 

First 256 chaotic band is born 3.569947860564655… 4.669200828940034… 

First 512 chaotic band is born 3.569946140622108… 4.66920282584272… 

First 1024 chaotic band is born 3.569945772263088… 4.669201767512598… 

 

In the context of above calculations, it is to be noted that we get equations for every values of  which 

gives the same bifurcation value. So we can set the formula  

 

As              where      for every values of . 

For example for the first reverse bifurcation point, the equation is  

For second Misiurewicz point as , so   hence we get two equations viz 

    and      

Both these equations gives the same value 3.574804938759208 

Accumulation Point  

Let  be the sequence of bifurcation points. Using Feigenbaum , if  are known then  can be 

predicted as . Similarly  which implies , 

repeating this argument it can be seen that . However this expression is exact when , 

the bifurcation ratio, is equal for all values of n. In fact  converges as , i.e. , So,  we 

consider the sequence , , where  are the experimental value of bifurcation points, 

clearly  

  Using the experimental bifurcation points the sequence of accumulation points { } is calculated for some 

values of n. The values are as follows: 
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The above sequence converges to the value  , which is the required accumulation point .  

For reverse bifurcation  

 

 

 

 

 

 

 

 

 

The above sequence converges to the value  , which is the same accumulation point 

(correct up to 13 decimal places ).  

CONCLUSIONS 

From the above discussion, it becomes clear that the Feigenbaum point or the accumulation point can be 

considered as a chaotic mirror. The image of the point (where the one periodic orbit is born) is the point  (where the 

1-periodic chaotic band is born), the image of the point (where the 2-periodic orbit is born) is the point (where the 2-

periodic chaotic band is born), and so on. Periodic orbits in the Periodic region are images of chaotic bands in the chaotic 

region.  

 The Feigenbaum point or the accumulation point is at the same time and . In the first case, it is a very 

special Misiurewicz point with infinite number of chaotic bands and in the second case, it is a periodic point but with 

period . It is then a very special separator.   
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